Prevod BIN -> DEC v PICu
TomasR
tomcopy
Středa Březen 17 12:04:58 CET 2004
>potreboval bych poradit s procedurou, ktera by rychle prevedla 16-bitove
>binarni cislo do dekatickeho v asembleru pro PIC 16C84 . Zkousel jsem to
>vymyslet a dal jsem dohromady jedno reseni, ktere je ovsem velmi narocne na
>procesorovy cas.
>
>Mam 2 8-bitove registry horni a dolny byte dtaneho cisla.
Tady je neco z netu
;Takes hex number in NumH:NumL Returns decimal in ;TenK:Thou:Hund:Tens:Ones
;written by John Payson
;input
;=A3*163 + A2*162 + A1*161 + A0*160
;=A3*4096 + A2*256 + A1*16 + A0
NumH EQU AD3M ;A3*16+A2
NumL EQU AD3L ;A1*16+A0
;share variables
;=B4*104 + B3*103 + B2*102 + B1*101 + B0*100
;=B4*10000 + B3*1000 + B2*100 + B1*10 + B0
TenK EQU LOOPER ;B4
Thou EQU D2 ;B3
Hund EQU D1 ;B2
Tens EQU R2 ;B1
Ones EQU R1 ;B0
swapf NumH,w ;w = A2*16+A3
andlw 0x0F ;w = A3 *** PERSONALLY, I'D REPLACE THESE 2
addlw 0xF0 ;w = A3-16 *** LINES WITH "IORLW b'11110000B' " -AW
movwf Thou ;B3 = A3-16
addwf Thou,f ;B3 = 2*(A3-16) = 2A3 - 32
addlw .226 ;w = A3-16 - 30 = A3-46
movwf Hund ;B2 = A3-46
addlw .50 ;w = A3-46 + 50 = A3+4
movwf Ones ;B0 = A3+4
movf NumH,w ;w = A3*16+A2
andlw 0x0F ;w = A2
addwf Hund,f ;B2 = A3-46 + A2 = A3+A2-46
addwf Hund,f ;B2 = A3+A2-46 + A2 = A3+2A2-46
addwf Ones,f ;B0 = A3+4 + A2 = A3+A2+4
addlw .233 ;w = A2 - 23
movwf Tens ;B1 = A2-23
addwf Tens,f ;B1 = 2*(A2-23)
addwf Tens,f ;B1 = 3*(A2-23) = 3A2-69 (Doh! thanks NG)
swapf NumL,w ;w = A0*16+A1
andlw 0x0F ;w = A1
addwf Tens,f ;B1 = 3A2-69 + A1 = 3A2+A1-69 range -69...-9
addwf Ones,f ;B0 = A3+A2+4 + A1 = A3+A2+A1+4 and Carry = 0 (thanks
NG)
rlf Tens,f ;B1 = 2*(3A2+A1-69) + C = 6A2+2A1-138 and Carry is
now 1 as tens register had to be negitive
rlf Ones,f ;B0 = 2*(A3+A2+A1+4) + C = 2A3+2A2+2A1+9 (+9 not +8
due to the carry from prev line, Thanks NG)
comf Ones,f ;B0 = ~(2A3+2A2+2A1+9) = -2A3-2A2-2A1-10 (ones
complement plus 1 is twos complement. Thanks SD)
;;Nikolai Golovchenko [golovchenko at MAIL.RU] says: comf can be regarded
like:
;; comf Ones, f
;; incf Ones, f
;; decf Ones, f
;;First two instructions make up negation. So,
;;Ones = -1 * Ones - 1
;; = - 2 * (A3 + A2 + A1) - 9 - 1
;; = - 2 * (A3 + A2 + A1) - 10
rlf Ones,f ;B0 = 2*(-2A3-2A2-2A1-10) = -4A3-4A2-4A1-20
movf NumL,w ;w = A1*16+A0
andlw 0x0F ;w = A0
addwf Ones,f ;B0 = -4A3-4A2-4A1-20 + A0 = A0-4(A3+A2+A1)-20
range -215...-5 Carry=0
rlf Thou,f ;B3 = 2*(2A3 - 32) = 4A3 - 64
movlw 0x07 ;w = 7
movwf TenK ;B4 = 7
;B0 = A0-4(A3+A2+A1)-20 ;-5...-200
;B1 = 6A2+2A1-138 ;-18...-138
;B2 = A3+2A2-46 ;-1...-46
;B3 = 4A3-64 ;-4...-64
;B4 = 7 ;7
; At this point, the original number is
; equal to TenK*10000+Thou*1000+Hund*100+Tens*10+Ones
; if those entities are regarded as two's compliment
; binary. To be precise, all of them are negative
; except TenK. Now the number needs to be normal-
; ized, but this can all be done with simple byte
; arithmetic.
movlw .10 ;w = 10
Lb1: ;do
addwf Ones,f ; B0 += 10
decf Tens,f ; B1 -= 1
btfss 3,0
;skip no carry
goto Lb1 ; while B0 < 0
;jmp carry
Lb2: ;do
addwf Tens,f ; B1 += 10
decf Hund,f ; B2 -= 1
btfss 3,0
goto Lb2 ; while B1 < 0
Lb3: ;do
addwf Hund,f ; B2 += 10
decf Thou,f ; B3 -= 1
btfss 3,0
goto Lb3 ; while B2 < 0
Lb4: ;do
addwf Thou,f ; B3 += 10
decf TenK,f ; B4 -= 1
btfss 3,0
goto Lb4 ; while B3 < 0
retlw 0
Další informace o konferenci Hw-list