<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div dir="ltr"></div><div dir="ltr">Ahoj, </div><div dir="ltr">ak je prvy filter spravne navrhnuty, tak funguje skalovanie s frekvenciou. </div><div dir="ltr">Z pohladu teorie je to celkom fascinujuce. Najprv sa navrhne tzv. low pass prototype pre dany polynom, co je normalizovany low pass pre frekvenciu 1 a impedanciu 1. Z toho sa potom skaluje na impedanciu a frekvenciu, na high pass, band pass etc. </div><div dir="ltr">ak mas cas, mozeme sa spojit cez zoom a navrhneme filter s pouzitim profesionalneho nastroja. Je to par klikov. </div><div dir="ltr">b. </div><div dir="ltr"><br></div><div dir="ltr"><br><blockquote type="cite">On 16 May 2024, at 23:03, Kořenský Pavel <pavel.korensky@dator3.cz> wrote:<br><br></blockquote></div><blockquote type="cite"><div dir="ltr">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-2">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;" dir="ltr">
<p></p>
<div>
<p>Zdravím,</p>
<p>hrabu se tady v detailech toho mého bastlu toho 10MHz normálu.</p>
<p>Tak jak to běží teď jsou lokální oscilátor 10MHz a signál 1.25MHz z GPS navázané na tu 74HCT4046 tak nějak klasicky. Tzn. přes kondensátor 1uF, za ním je dělič 47k do +5 a 10k na zem. Vše funguje jak má.</p>
<p> Kolega Valuch má v tom svém návrhu (tedy přesněji, v návrhu jeho diplomanta) zařazený navíc filtr:</p>
<p><img alt="Pi filtr 1.25MHz" width="312" height="175" src="data:image/png;filename=pi_filter_1.25MHz.png;base64,iVBORw0KGgoAAAANSUhEUgAAATgAAACvCAYAAABpa8IlAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABwISURBVHhe7d0JeBRF2gfwFxCQ5SZyCIEFwQCCC4riAcgZb27BBRRRAmjEKMQgKgLLoUJAISiHZ8ANmLAEFA8gRm4xEAIusBDujwQUY5AAEi6Zr95K9aQzTJLJMXG6+v97nnm6qnsm0G9Xv1PV3dNdyiEQAICGSqspAIB2kOAAQFtIcACgLSQ4ANAWEhwAaAsJDgC0hQQHANpCggMAbSHBAYC2kOAAQFtIcACgLSQ4ANAWEhwAaAsJDgC0hQQHANpCggMAbSHBAYC2kOAAQFtIcACgLSQ4ANAWEhwAaAsJDgC0hQQHANpCggMAbSHBAYC2kOAAQFtIcACgLSQ4ANAWEhwAaAsJDgC0hQQHANpCggMAbSHBAYC2kOAAQFtIcACgLSQ4ANAWEhwAaAsJDgC0hQQHANpCggMAbSHBAYC2kOAAQFtIcACgLSQ4ANAWEhwAaKuUQ1BlKKJte/bQnS1aqJo9nTpzhhL37qXqlSpRjSpVqHH9+mqJfR1KSZFx+f3cObqjeXMZFygZSHAeKjVsGDk+/FDVsvA8VwfHj7fFTu0uHqzaiBGUcfWqqhFF9upFTz3yiKrpzV1MOLkFTJpERkR4yJQ2cyaSXAnBELUIuDEbr7Dbb6fAWrVs3WNZsW6dTG5GTHrceCMNWbFCLbWnJiK5PSd69UZMONFxDxdKBhJcMfn3f/9LL/fooWr2dJ9I8mXFtOMrr9Dbn31GK3/+mV67886shTY2qm9fVcrSuG5dVQJvQ4IrBvOXL5fT+++6S07trIx4bTh1il7dsEHWA+rVk1M7az15shyqJqme29FffpFT8D4kuGLw6aZNNP7++1XNvngnviCmxnBsVmCg7YeoHIdbKleWQ9U277wj5/1pOkYJ3oUEV0R85nTP2bPUv2tXNQcMtatXVyV7S5g5Uya6rS+9JOt8JhVKBhJcEYXHxtLApk1xVkzgEyzlxbT3xIm0JiGBBsTE0NQOHbIW2hzHo8OsWfR0QADaSgnCZSIecr0khL+RWXRcHAXedZftGq27S2Q4JjxM5eEYWx0UZKvjkrm1EWP+5/370+Ni2A4lBwkOALSFISoAaAsJDgC0hQQHANpCggMAbdn+JAPf5cEvNFTVshhnv1wdPn6cGk+cqGq5v8/g+uNr17qv4mv72s6apWpZcvt/f5+YSF0XLJBlT9bNqjExzoSa5fb/nvOf/1DI6tWyrHNMrMD2PTj+4XPbKlVkgzJeuek4ZQo1LFuW0tWFm7paumGDvHlAfjHhL4f7RXIb3Lix1vFg3Eb4spf8YsLXu70kkhtfEqJ7TKwAQ1QPvS4aa8aff9KRuXNxoabSZfx4uqd6dVo4dqyaAz0//pjeDQzE9W4+wvYJLm77dtoheiI8LOBXy5AQtSSnN7duFWOHUs73dTHt1Fw3mMtWtVL0asOTkpzr2nPCBLUkp5/++IM2/f67831h8+apJfrFJEm0kQc++si5ruFRUWpJThccDnoxLk6+p/Lw4XIIb9AtJlZg+wTXomFDeqRePTmc4KHnnsxM591BXFUvU0a+JzE0lNamp8tjVfkxdggrNeg2depQeOfOMibxI0bQlydOyF8ouPNg7dryfePvvptmiKToCSvGpFXlynK787q+LIbvY9atU0uuNb1TJ/m+O0Tv1jg+mR8rxsQS+CQDZKOgIEd6RoaqZXOdb65z2ZBbmbnWrSK3/3de6+dJmbnWrSK3/3de6+dJmbnWofBs34PjA+WuvZOY+Hg55TvUGvfwYqPmzlWlLOY7s3rSm7MKjgfHhRlTI0Z8htCYxyK/+UZOt+/bJ6dm5vdZnXn7moedvI4cEzM+285mx8TIKTO3MZ3i4utsn+C44fGPw43hQYVSpZy3PuodFUWB6nKJ5YMGUdShQ8731RLDVeOH5P8Uw1y+rEKX4cVsMUTnS2d4fXjqX7as81bsfPnDM+q+ZkOaNKGnxXv5fXeIoXtnPz85n/lfd53zb+hgmBhy8rrwi4edPdRdeaPWrJExWfj117J+c/ny8lIift9LcXEU8cADcn71qlWpnJjyfNfLksCLVE/O1g4eOyaHm8bUEL9tm+NQaqqqOZzv2bp7t5qTjee5ft7KjHV0XdfIr75SpSzGOucWE3fzrcrTmPByo62Y5dV+wDtwNxEA0BaugwMAbSHBAYC2kOAAQFtIcACgLZxkUM6eOkV71dXpVWrXpptuv53KVagg6+mpqXSIf6ol8LJm7drJMjuxfz+l7t4tyzVvuokatW4ty+zIzp2UdviwLPu3bEl1AwJk2SoKu277Nm+mMydPynLjtm3Jz99fli9lZtLhpCTnsuadOlHlGjVk2SoKs268bO/GjXTx3DkqX6kS3XTHHc5l3O4OJyY6lzXv0MHZ7qDoykwUVNmnnfrjFC3duZQ2Ht5Il69cpgY1GqglRceNNrJZM7pBNK7rK1em5Ph4+uGDD6hR+/aUuGIFrQoNpVpi576uXDnaMm8e7RHLbwkMpO8XLKC1EyY4l22aPVs28r+3aUMrxPzdy5bRja1a0QXReOPGjqVzFy/KnaK47D+5n2J3xVJSahJVLleZ/CplX4dWVHHvvVfgdat/66307+BgOhgX51zGsbtcvjxV8vOjqKFD6cxvv1E1kRQyTpygWJEEaok43tCg+Lbl5kOb6cs9X9K+k/uofrX6VKFc8SQLTlKFWbdSpUvTRw89RJeuXpXLTh09SqvCwqj6LbfQbykpFPPkk1RRzOd2d2jDBooXu2OAeP/fiumGDpmXMmnV/1ZR3P44OnnmJDWo3oDKlimrlurPEj04Tm63Rd1Gx/48JuvVSlWj0CahNK7bOFkvCv4G/ejBB2lwbKzz25htWLSIkr/6is6JBum6jHf+n3ftIodotAMiIpzfuLwT8M5/5cIFuizKrsuWhIRQ6379qFUxPCQ64UgCdV/dndIcabJes1RN+rzz59SlaRdZLwpO+AmRkQVet+vEzl5LfFEEjhwp5zMjvtXEDu0vei7mZdwzXtSnzzXxLaxZ62fRv/b+i047Tst6gzINaHO/zeRfveh/m7c5K+i6lePfo44fn6PXz73f5UFBRKL9PDxnTo5lHPtvR42iUWrEUFQ9FveglRkrVY2oe9XuFP1YdLElfp/HCc7XTY6b7KC5lOPlP9/fkX4uXb2j8BKWLXOsX7hQ1XJ6y9/fsSkqStWyXTx/3jFFhO7wjh1qTjbxreyYWrGinLri90eHhala0dzz6T3XxITnFQf+PxZm3TgmHBtXHEOOpTsce94GRcVtgduEa0y47RSHwqzbymnTHBHduqlaTp8OGSJf7kQGBTmOJyerWuFtOrjJUWd+nRzx4DrPt4tScsVtYEqwKrgxcMeOHMeXDJ8MHkzdxoyhBi1bqjnZ3hPDjwELF5Kf+smO2bt33UWjEhJULRt/40eYfs7kzricP3f1mrziwULS090eH8tr3T7p1YteFMMsV8d276bvpk+nZ0Sv2BX3ZhbfdpuquecrMXndzWAnr3X7afVq2vP11zRQ9HZdfTd/vpx2e/ZZOTWbWqqUKrlXUvHQgSWGqIu2LqKntj+lall4+LFvyD77dLVdDIoZRIvTF6taloF+Aymqv/v7lOmOjzU1i2zmPIxhWNhmIQ1uO1jV7IWP0XZa0Yl+vvqzmkN0Y+kbaV2vdRRQ21onvArLEpeJ9GvdTx474I1j+LTjp7ZNbmxa4DRqVKaRPPZWUXxFcZnn2RW3BW4TBm4r3Ga47dgVJ7HgxsGyjTCect0uyY1Z6jIR/kaaN7gpvRGbTjUqWuvyAm/gXkvK7ykyJm+uPG/rhG/gE1KT+/jRc4uSbbUj5yX191Sa+c/6FPp5SrGccLESS13oyw32hjWE5KZwQjNiguSWhdsGxwPJLRsnNY6J3ZIbwy8ZAEBbSHAAoC0kOADQFhIcAGgLCQ4AtGW5u4nwVd7urigvDiEREfTBrl10UZSvE68ZgYH0Yv/+1GPCBFp54oR8D+tQowZtmJZ1zdktISG0NzNTlvmhIltGj6bbmzeX9ZLizZjcFRpKW9VToK4Xr93jx8sH0NR/7jlKvXJFzmdvdexIY594Qj4xqlFYGJ25elXOr1G6NKV7+GzQ4uLNePD6BYj1S1frxw/XSZk3L9eH6/DzUfkzN4nPZKjP8AOMenXqJMslxZsxOZiSQo+/8w4lnTsn6zO7dKHRAwa4jUnyG29QgLq5ws7kZLptxgwZI6/hBGcl/JtAb1i+dq3juqAgOWWzoqMdq3/8UZbnxcY6EvfuleW5y5Y5n1v53datsmw8mKZRcPBf8kxLb8Wk+/jxjhrDhzvX7+X333c+SGXchx86H7DTb9Ik53rztOnIkbLMn+O6EceS4q14sDrPPutoM2qULPP6vRARIctmHA+OgRGfodOnO24YMUKWHxo3zlF52DBZLkneisn5Cxcc9URMouPiZH3XgQOOTTt3yrKB3xMUHu6Ys3SpmpP1YJ6GJbC/YIiqfL55Mz1Ut67zm5V7bsZjAZ/t3ZvaNGsmy4936yanrGGdOnL67Y8/yuenpl2+LOu62JGWRhNFL/amevVkPTw42Pn4wMlBQVRD3dKn7913y6lh35w5cmp8rkkx3CnEF3BP7BfRa12j7jDG6xfxwguybHjrs88oTvRo3uzTxxmfw+npNFk9PvCbyZPprPge0OXZqMlHj9K9Yr/pr/aLlk2aULtWrWTZ8G50NF0RvdeBoi0ZPouPp7d79VI170GCU6LFhhr58MOqlrsnwsOpdpkyssw7exXR9R+5ahW1EV30P0TD/d7Nj6etKlUk7EH53NqJd9TRsbF0f61aag5RU5edfuf+/apkbb9nZMipkbjceW3DBjot2sFjixc7Hwi9ViQ441m7hrz+hpVcFG1k6bGcv/919frGjRR54AAFjBlDmRf5ABBRREgIPW5KeN6CBGdy2HSczZ3+4tv38OnT9L/p02V9TUICnRGNOX3mTHkc4VHxTdZF3SVCF8ZO7Q4nt3tff53aifVePXWqnMexOCEaMR9/MY7BXDYdq9MdtwN+LREjAH4gtME1juYn3VvZlT//VKXcGTHh45bpYv8pSX/5SYb8bg1TVJ4eWB05axZtE40uQeyg7nBy+++vv9IPYkc2vn15B+enlPPGY9v27JFPuDfqheUrMeETKL1btqSpw4erOdmM5PYP0XOLeeMNNTcnfk8dEZ+96sREUfhKTMqKpL3Pg/Uxt4XA116j6hUqyDjxoQzu7Re1jTBfiEnqyZM0UOwzG9SXfl74Cy99xgyqUbWqmpM1rzhikZu/tAfn7Q3EPP03Jj3zDCWJHXKASGDcCPns4cwlS+Qyd8mNGd/Ks2Ni5Ddyp9mz6fkWLeS8wvKlmLzywAM0fds2mhwZKXurN48cKXdcT5Ibx6O5GJLcLhqzryc35um/8Ui9enT7lCkyHhwXjgnjcq+JE2VsOEZdRFsYe8cdctmg9u1phRjGxa5dS73mzKFG5fh8e9GUREw84V+7Nt1QsSIFi2R+PC2N5sXG0qzoaLlselQUrVi/XpbXJyVR/bIlf6t07XtwzNNv5+8TE2nGihX0rfhW6iUa8sejR8uE5u50t/Gtw8dZjKHIMzffTB+LnbooSqrhehoT8/q9cOut8tiJ0TtxZcTEiFe3mjUpeuzYIh9v8rWY8OVEc3btkuUI8SXwwmOPybbT1XQ5zNMBAfRJWJiq5fwMD+OtEBNP48HH1RaI/WbUd9/RtE6dqO9998kvtQ07dlDHudl351wfHEz3qZub5rVPFSefuA7OmxvL043kS7zdeBGTayEmOVkxHu5Y7kJfAABP4SwqAGgLCQ4AtIUEBwDawkmGXBgXYrpe4sDzq1etWuSzYHnxtQPqfNb0TjeXv/ClEmfPn6e+nTurOd7jSzHhS0H4EiHXtsHz123fTvVr1XIbr+Lmi/sNn1Hli3n58hEznp954UKOa+BKAi4TUdydtmaup64Lc3rb9TN5vb8k4sE8bcCvLlhAbycmXvN/bvz883T40iVZrly6NJ3x4I4hBYmDma/F5L5XXqGNp07l+P9zcqsbGirvRMM6VK+e78WvRblUwmr7jXHnELP81rUo8TH8pQnO1xqugXtpTSZNcnu9El8APNn0Q3xP8IbypYbLPIkJ/7rjfdF7Y+b/P8cnQMTnwMSJ8gfnfxs+nBYPHJjvLYAKEgczX4rJP158kfaJXivfVsG8Lnyd27/5ImiR6Lfv20dtRdv5M591LWw8mK8kOFd8sfPEAQOoddOmak4WvsiZ9SlAb78o8TH8pcfgChPAgirMvzEtJob6NWjgdhj6m+hmP/DRRzL4/OILPA3GPH7xhi4MX4pJ6TJlKNLNHR8SxQ7MdzYz7hbyhGjMvaOyHjhtjkFFkfi4Z1NUvhITTux3i3bx4+jRak42vog3rH17WeY7z3B8eAjPzDHhnm9xKImYFBT30phrcmOnzp6lvosXO+PAFwEbzPHhXw0VK+7BWYk37/XF+B5eFYcNk/ercueG4cMdI2bOlOVOY8Y4Kpnu7cX3tuJ7hPG948z3ueKy8fIGb8fE9f/NMTLPM9d5OjUy0lk2x5HrxsubvB0P5roOedW5zPcZdI0bl80vbyqJmITNnetYvWWLquX0+gcfOELff1/eG25dYqJc3/TTp+UyLvN95Iyyeb75VRg4i+oiJj6eWlSunOtB4jQxBJmvvsHXTptG58R2MONejXHvODPuahe1u+0rOEZmY13W67WnnlIluiaOOsXBFd8LzoxPzhh4+O5uRGDEw+oxOZWRQesOHqQO6qdYrqaI3tmM4GCqUL48dWzTRs3NxveRM5hPRBQ1PkhwLiatWUNPq6FGfopj+GVFbQICqLwqsxgxNPmoe3dVsye+ycLCrVtlObcz8DpbHBdHg++5RyYwT4nenCp5DxKcifGNy3fwNeNjA8YxtUb8g+FXXpHJrfXYsfT3YrgzhNVwr+z60qWpoYoFnzkc2qNH1kKb4rvRHBA7bG/RTjq8+SY1u/56r15K5GsWbdmS4469jPebrq++KssffvEFDRJx4Z4e323klgoVyK9aNbnMm5DgTLhBRg4Zomo5faKGpdvfflteIsD3gUu5fJmS3npLzteRceDXtcwOh4fT/4n151gcdzn9r7PcYsJtZ//48bTi+HH6+coV2qtu224X7w4e7PYat9lDh8rpsJ49afGRI+T38svyriMbJ08uUG+vsCz3Y3s+Pe6LZ5D+SohJTojHtewaE/TgAEBbSHAAoC0kOADQFhIcAGgLCQ4AtIUEBwDaQoIDAG0hwQGAtpDgAGxgXPbjSW3FcgnOrhsqL4hJTogHGNCDAwBtIcEBgLaQ4ABAW0hwAKAtJDgA0JalElx6aqoqgeGnNWtUCczQVoBZKsFdPH+eoo+EqRqwi+fOUULtZaoGjNsItxXINiVYFWwGQ1QA0BYSHABoCwkOALSFBAcA2kKCAwBt+eRjA/kRZ4URuGwZte3TR9X0cWL/fvq0aVNVK5ink5OpbkCAqulja2wsxfXtq2oFo+vj82LGjKED4eGq5rmbw8Ko//TpqqYZTnC+Zu+mTY4p4r/G0/xcPH/eERkUJF9c1tWaOXMc79x5p+O3lBQ1J3f8Hn4vf0ZXBd3uBWlTVlXQ7V6QNmVVPpngmCcN0i7JzeBJg7RDcjN4uv3tkNwMnm5/OyQ35rMJjuXVMO2W3Ax5NUw7JTdDfu3ATsnNkF87sEtyYz6d4Ji7BmrX5GZw10DtmNwMubUHOyY3Q27twU7Jjfl8gmPmhmr35GYwN1Q7JzeDa7uwc3IzuLYLuyU35pNnUd3Zt3kzLWvfnvx69qQKNWvSgIgIKlehglpqT3HvvUe7Fy2S5ZaDB1PgyJGybFeXMjNpSUgIZaalUfoXX1DfTZuoWbt2aqk98U0HFvXpQxXq1qXMEydocGws+fn7q6X6s0yCY5zk9q9fTw+OGmX75GbYoBLcfSLBQVaSW/XuuxTQsaPtk5uBk1y86BB0FcnfTsmNWSrBAQAUBH7JAADaQoIDAG0hwQGAtpDgAEBbSHAAoC0kOADQFhIcAGjL5xJc5sWLdCojQ77MXOvupJ48qUp64XU34mLgOr/y4voZnfC2do2BJ+tqxFJHHBPXGHgSE133G+ZTF/p++8MP9HxUFB25dEnWVw8dSvfffbfcSH4vv0zn33uPKpQvL5eVGjaMHB9+6CwbBjRqRB+HhjrfZ3VvLlpEr2/cqGpEKVOmkH/t2rT5p5+ovYiHOQZGmZljMrVDB3pNk186cHIaOnMmLTlyRNbvrFKFtoo643VeNnAg9enc2Vl310YalStH7w8aRA/de6+aY20HU1JoSEQEbT59WtbN25vXO/mNNyigQQNn3V1M2lWrRpEhIdSkfn01RxOc4HxFnREjHMvXrVO1nCgoyDFn6VJVy6objPL5CxccHcaMcYikIOtWt+vAAYff8OGOlF9+UXNy4vXetHOns2xm1Pmz/De27t4t61Y3c/FiuY15W7videZX+unTzrrBXOY2xm3N3d+woh4TJjhG5XKjBV7vnmK5IbeY8OcfHjdO1fThM0PU/ceOUYd69ahXx45qzrUWbdmSZ3eae22TH3+c9h4/ruZY227RSxnXpYvsseUmfPnyPIdc/Fn+Gz8dOqTmWNvRtDS5jXProS/s3Zvmf/GFqrnHbYzbWvLRo2qOtX0p2vu4PHroNStVojU//qhq7vHnv/nlF+2G7z6T4C6IYelSkeTyMvbRRykiNlbV3GvbogV9psnOPCAmhh7NZxgVIBIYD+3zwn9j2MqVqmZtc3btkts4N/26dqUVYvjOX5h54bZWukwZVbMuIyHVEEP13IT170/jli7NM3nl9Xkr85kEd/aPP1QpCx8fMB8jYHzMZL/owe1MTlZzriWGJ6qkh8OqN2rEwzUmIX360NtffaVq7hl/QxfGNnYXD+7ZTenXj8LFl0N+XNucFWVeuKBKWdzFhI+/9WrVipbGx6s5uXP9e1bnMwmuecOG1LBcOTp15oysmw+YG7jxhokhyMQlS9Sca322ejU9l8c3vJWseOIJelf1vDge7mLCQ9DB99yjau7x3+C/pQPetryNmbt4MD4xlXbunKpdi9sYtzVuc1ZXo2pVal2xIm3auVPWc4vJsz170lPLl6vatfjz/Hf47+nEZxIcB7Zfy5b0ZHg4JYhhyKzoaLUkp3bim4iHZa64+82f+TghgYLFUFYHvKNevnqVRs6aRdv27KEx8+apJTkN7d5dTl2HZXy8kj/Lf4P/lg542/I25m2dsHu3nOduODr9mWfk1HVYxr1/bmPc1nTZmcc+8gg9KRIbH2fL7VgbryufYXaHP8Of57+jHXWywWcsX7tWnt3hV+qvv6q5Oc/48JlB17NBxuvgsWNqrh7SMzIc/4mPl+vGU/OZP9cYmM+2GvHgz/Df0AlvY2P9Vv3wg5qbMx6M60a8jPfzi9uYbtYnJTnXz3zGnOsGjoW5bryfX/x5HeGGlwCgLZ8ZogIAFDckOADQFhIcAGgLCQ4AtIUEBwDaQoIDAG0hwQGAtpDgAEBbSHAAoC0kOADQFhIcAGgLCQ4AtIUEBwDaQoIDAG0hwQGAtpDgAEBTRP8PI28luJ/Zh9sAAAAASUVORK5CYII=" data-unique-identifier=""></p>
<p>Což je OK, protože oba vstupní signály v jeho řešení mají kmitočet 1.25 MHz.</p>
<p>Zařadit filtr je jistě dobré, aby se to nechytalo třeba na vyšší harmonickou. Jenže jak ten filtr přepočítat pro kmitočet 10 MHz ? Já se bez mučení přiznám, že tyhle věci jsem uměl kdysi dávno, ale nějak mi to vypadlo z hlavy.</p>
<p>Našel jsem si kalkulačku tohoto typu filtru na https://cz.key-components.com/tools/butterworth-pi-lc-low-pass-filter-calculator.html a zkusil jsem to. Jenže jsem narazil na jeden problém. Ta kalkulačka chce zadat impedanci<br>
</p>
<p> Z0 ať už je to cokoli.</p>
<p><img data-unique-identifier=""></p>
<p><br>
</p>
<p><br>
</p>
<p>Dal jsem tam pokusně 50 Ohmů, protože naprosto netuším jaká hodnota by tam měla být. V datasheetu 74HCT4046 se nic o vstupní impedanci nepíše a v datasheetu toho Rb standardu je jen uvedeno, že na výstupu dává 0.5Vrms do 50 Ohmového zatížení.</p>
<p>Takže mám dvě otázky.</p>
<p>1. Jakou impedanci bych tam měl vlastně zadat a kde to vyčtu/vypočítám ?</p>
<p>2. Pokud bychom to nechali pro 50 Ohmů, jak lze zpětně spočítat, jak se změní hodnota frekvence když použiju komponenty z řady E12 ? Tedy např. L1,L3 = 1 uH, L2=1.5uH a C1,C4 = 150pF a C2,C3 = 560 pF. Je na to nějaký jednoduchý přepočet nebo je lepší si
to odsimulovat v KiCADu ?<br>
</p>
<p><br>
</p>
<p>Zdraví PavelK</p>
<p><br>
</p>
</div>
<br>
<p></p>
</div>
<span>_______________________________________________</span><br><span>HW-list mailing list - sponsored by www.HW.cz</span><br><span>Hw-list@list.hw.cz</span><br><span>http://list.hw.cz/mailman/listinfo/hw-list</span><br></div></blockquote></body></html>