

Vishay High Power Products

Schottky Rectifier, 3.0 A

PRODUCT SUMMARY			
I _{F(AV)}	3.0 A		
V _R	40 V		

FEATURES

- Small foot print, surface mountable
- · Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead (Pb)-free ("PbF" suffix)
- Designed and qualified for industrial level

DESCRIPTION

The 30BQ040PbF surface mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, freewheeling diodes, battery charging, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	VALUES	UNITS	
I _{F(AV)}	Rectangular waveform	3.0	A	
V _{RRM}		40	V	
I _{FSM}	t _p = 5 μs sine	2000	A	
V _F	3.0 Apk, T _J = 125 °C	0.43	V	
T _J	Range	- 55 to 150	°C	

VOLTAGE RATINGS				
PARAMETER	SYMBOL	30BQ040PbF	UNITS	
Maximum DC reverse voltage	V_{R}	40	V	
Maximum working peak reverse voltage	V_{RWM}			

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average femored average	1	50 % duty cycle at T _L = 118 °C, rectangular waveform		3.0	
Maximum average forward current $I_{F(AV)}$		50 % duty cycle at T _L = 110 °C, rectangular waveform		4.0	
Maximum peak one cycle non-repetitive surge current	_	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with	2000	Α
	IFSM	10 ms sine or 6 ms rect. pulse	rated V _{RRM} applied	110	
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 1.0 A, L = 12 mH		6.0	mJ
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T_J maximum $V_A = 1.5$ x V_B typical		1.0	Α

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 94179 Revision: 02-Jul-08

Vishay High Power Products Schottky Rectifier, 3.0 A

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop	V _{FM} ⁽¹⁾	3 A	T _J = 25 °C	0.53	V
		6 A		0.68	
		3 A	- T _J = 125 °C	0.43	
		6 A		0.57	
Maximum reverse leakage current	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	0.5	- mA
		T _J = 125 °C		30	
Maximum junction capacitance	C _T	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		230	pF
Typical series inductance	L _S	Measured lead to lead 5 mm from package body		3.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs

Note

 $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		- 55 to 150	°C
Maximum thermal resistance, junction to lead	R _{thJL} ⁽²⁾	DC operation	12	°C/W
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation	46	
Approximate weight			0.24	g
Approximate weight		0.008	OZ.	
Marking device		Case style SMC (similar to DO-214AB)	V3	BF

Notes

Document Number: 94179 Revision: 02-Jul-08

⁽¹⁾ $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink

⁽²⁾ Mounted 1" square PCB

Schottky Rectifier, 3.0 A Vishay High Power Products



Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

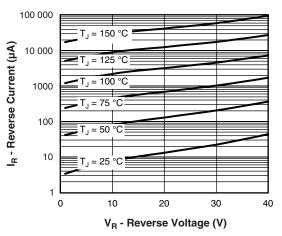


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

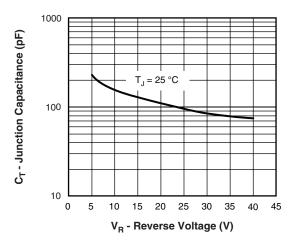


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

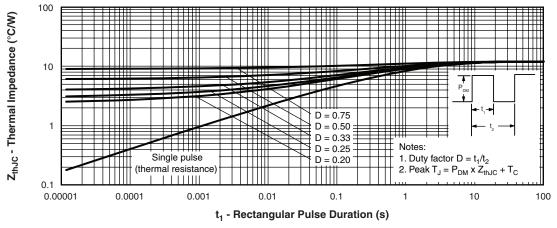


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

Vishay High Power Products Schottky Rectifier, 3.0 A

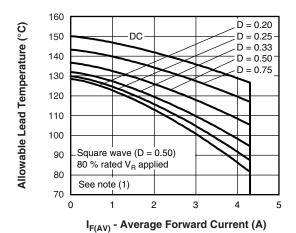


Fig. 5 - Maximum Average Forward Current vs. Allowable Lead Temperature

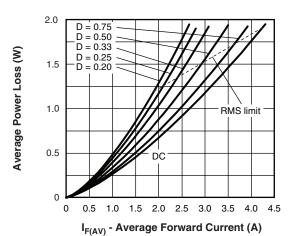


Fig. 6 - Maximum Average Forward Dissipation vs.
Average Forward Current

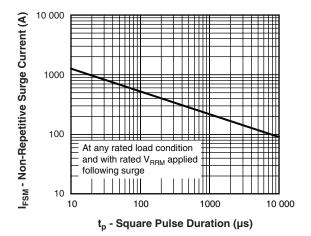
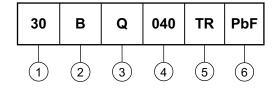


Fig. 7 - Maximum Peak Surge Forward Current vs. Pulse Duration

Note


 $\begin{array}{l} \text{(1)} \ \ \text{Formula used:} \ T_C = T_J \text{-} (Pd + Pd_{REV}) \ x \ R_{thJC}; \\ Pd = \text{Forward power loss} = I_{F(AV)} \ x \ V_{FM} \ at \ (I_{F(AV)}/D) \ (\text{see fig. 6}); \\ Pd_{REV} = \text{Inverse power loss} = V_{R1} \ x \ I_R \ (1 \text{-} D); \ I_R \ at \ V_{R1} = 80 \ \% \ rated \ V_R \\ \end{array}$

Schottky Rectifier, 3.0 A Vishay High Power Products

ORDERING INFORMATION TABLE

Device code

1 - Current rating

2 - B = Single lead diode

3 - Q = Schottky "Q" series

Voltage rating (040 = 40 V)

• None = Box (1000 pieces)

• TR = Tape and reel (3000 pieces)

6 - None = Standard production

• PbF = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS			
Dimensions	http://www.vishay.com/doc?95023		
Part marking information	http://www.vishay.com/doc?95029		
Packaging information	http://www.vishay.com/doc?95034		
SPICE model	http://www.vishay.com/doc?95324		

Document Number: 94179 Revision: 02-Jul-08

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1